Detecting Image Spam Using Image Texture Features
نویسندگان
چکیده
Filtering image email spam is considered to be a challenging problem because spammers keep modifying the images being used in their campaigns by employing different obfuscation techniques. Therefore, preventing text recognition using Optical Character Recognition (OCR) tools and imposing additional challenges in filtering such type of spam. In this paper, we propose an image spam filtering technique, called Image Texture Analysis-Based Image Spam Filtering (ITA-ISF), that makes use of low-level image features for image characterization. We evaluate the performance of several machine learning-based classifiers and compare their performance in filtering image spam based on lowlevel image texture features. These classifiers are: C4.5 Decision Tree (DT), Support Vector Machine (SVM), Multilayer Perception (MP), Naïve Bays (NB), Bayesian Network (BN), and Random Forest (RF). Our experimental studies based on two publicly available datasets show that the RF classifier outperforms all other classifiers with an average precision, recall, accuracy, and F-measure of 98.6%.
منابع مشابه
Improving Image Spam Filtering Using Image Text Features
In this paper we consider the approach to image spam filtering based on using image classifiers aimed at discriminating between ham and spam images, previously proposed by other authors. In previous works this approach was implemented using “generic” image features. In this paper we show that its effectiveness can be improved by using specific features related to the graphical characteristics o...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملآشکارسازی و تعیین مکان متون فارسی - عربی در تصاویر ویدیویی
Video text detection plays an important role in applications such as semantic-based video analysis, text information retrieval, archiving and so on. In this paper, we propose a Farsi/Arabic text detection approach. First, with an appropriate edge detector, edges are extracted and then by using edges cross ponts, artificial corners are extracted. Artificial corner histogram analysis is done for ...
متن کاملPerformance evaluation of block-based copy- move image forgery detection algorithms
Copy-move forgery is a particular type of distortion where a part or portions of one image is/are copied to other parts of the same image. This type of manipulation is done to hide a particular part of the image or to copy one or more objects into the same image. There are several methods for detecting copy-move forgery, including block-based and key point-based methods. In this paper, a method...
متن کاملDetermining Effective Features for Face Detection Using a Hybrid Feature Approach
Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...
متن کامل